歡迎訪問合肥育英學(xué)校!

合肥育英學(xué)校

您現(xiàn)在的位置是: 首頁(yè) > 義務(wù)教育 >指數(shù)函數(shù)及其性質(zhì)視頻講解(高中數(shù)學(xué)指數(shù)函數(shù)及其性質(zhì))

指數(shù)函數(shù)及其性質(zhì)視頻講解(高中數(shù)學(xué)指數(shù)函數(shù)及其性質(zhì))

發(fā)布時(shí)間:2025-01-03 04:33:57 義務(wù)教育 236次 作者:合肥育英學(xué)校

1.前言(廢話)

我已經(jīng)學(xué)習(xí)了指數(shù)和指數(shù)冪的運(yùn)算,以及指數(shù)運(yùn)算的相關(guān)性質(zhì)(如果有不明白的讀者可以提前閱讀)。今天筆者正式開始講指數(shù)函數(shù)及相關(guān)性質(zhì)。

指數(shù)函數(shù)及其性質(zhì)視頻講解(高中數(shù)學(xué)指數(shù)函數(shù)及其性質(zhì))

2.指數(shù)函數(shù)

指數(shù)函數(shù)實(shí)際上是之前研究的延伸。當(dāng)?shù)讛?shù)大于零時(shí),指數(shù)的取值范圍可以從指數(shù)擴(kuò)展到實(shí)數(shù)。這形成了指數(shù)函數(shù)的形式。為此,我們只能看看數(shù)學(xué)界的定義。

在此之前有兩個(gè)前提:

指數(shù)函數(shù)的底大于零。指數(shù)函數(shù)的底不能等于一。數(shù)學(xué)中指數(shù)函數(shù)的定義:

一般來說,函數(shù)

編輯圖像搜索

請(qǐng)點(diǎn)擊輸入圖片描述

只要符合上圖的函數(shù)形式,這個(gè)函數(shù)就稱為指數(shù)函數(shù)。其中x是自變量,函數(shù)的域是R。

3.指數(shù)函數(shù)的性質(zhì)

從指數(shù)函數(shù)的形式可以得出,指數(shù)函數(shù)的底必須大于零且不等于1,這將定義域分為兩部分:

由于基數(shù)的范圍形成了兩個(gè)區(qū)間,因此當(dāng)基數(shù)為0a1時(shí),該函數(shù)為單調(diào)遞減函數(shù),當(dāng)基數(shù)為a1時(shí),該函數(shù)為單調(diào)遞增函數(shù)。

我們以a1作為討論。指數(shù)函數(shù)也是一個(gè)函數(shù)。既然是函數(shù),我們就根據(jù)函數(shù)的相關(guān)性質(zhì)來討論。在此之前,我們首先要解釋一下指數(shù)函數(shù)的定義域:xR

指數(shù)函數(shù)的第一個(gè)性質(zhì)是單調(diào)性。從圖中可以看出,指數(shù)函數(shù)的單調(diào)性是由a的取值范圍決定的。當(dāng)a1時(shí),指數(shù)函數(shù)是單調(diào)遞增函數(shù)。當(dāng)0a1時(shí),指數(shù)函數(shù)是單調(diào)遞減函數(shù)。函數(shù)的第二個(gè)性質(zhì)是奇偶性,但從形象上看,不存在奇偶性,所以這里不討論它。函數(shù)的第三個(gè)性質(zhì)是周期性。同樣,從形象上看,沒有周期性,就不討論了。函數(shù)的第四個(gè)性質(zhì)是對(duì)稱性。從圖像上看,不存在對(duì)稱性,所以這里不討論。這是從函數(shù)的性質(zhì)來討論的。另外,還需要從指數(shù)函數(shù)本身的性質(zhì)來討論。

所有指數(shù)函數(shù)的圖像都經(jīng)過一個(gè)不動(dòng)點(diǎn)(0,1),即當(dāng)x=0時(shí),y=1。第二個(gè)專有性質(zhì)是單調(diào)性由a的取值范圍決定。注解:

讀者有不懂的地方可以留言。如果想了解更多高中解題經(jīng)驗(yàn),可以給作者留言!

專注于!專注于!專注于!重要的事情說三遍

午夜亚洲国产理论片一二三四,亚洲av无码乱码在线,最新中文字幕av专区不卡,中文字幕人妻在线二区